It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The human fungal pathogen C. albicans requires respiratory function for normal growth, morphogenesis and virulence. As such the mitochondria represent an enticing target for the development of new antifungal strategies. This possibility is further bolstered by the presence of fungal specific characteristics. However, respiration in C. albicans, as is the case in many fungal organisms, is facilitated by redundant electron transport mechanisms that makes direct inhibition a challenge. In addition, many chemicals known to target the electron transport chain are highly toxic. Here we make use of chemicals with low toxicity in mammals to efficiently inhibit respiration in C. albicans. We find that use of the Nitric Oxide donor, Sodium Nitroprusside (SNP), and the alternative oxidase inhibitor, SHAM, prevent respiration, lead to a loss in viability and to cell wall rearrangements that increase the rate of uptake by macrophages in vitro and in vivo. We propose that SNP+SHAM treatment leads to transcriptional changes that drive cell wall re-arrangement but which also prime cells to activate transition to hyphal growth. In line with this we find that pre-treatment of C. albicans with SNP+SHAM leads to an increase in virulence. Our data reveals strong links between respiration, cell wall remodelling and activation of virulence factors. Our findings also demonstrate that respiration in C. albicans can be efficiently inhibited with chemicals which are not damaging to the mammalian host, but that we need to develop a deeper understanding of the roles of mitochondria in cellular signalling if they are to be developed successfully as a target for new antifungals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer