It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A central theme in biology is to understand the molecular basis of fitness: which strategies succeed under which conditions; how are they mechanistically implemented; and which constraints shape trade-offs between alternative strategies. We approached these questions with parallel bacterial evolution experiments in chemostats. Chemostats provide a constant environment with a defined resource limitation (glucose), in which the growth rate can be controlled. Using Lactococcus lactis, we found a single mutation in a global regulator of carbon metabolism, CcpA, to confer predictable fitness improvements across multiple growth rates. In silico protein structural analysis complemented with biochemical and phenotypic assays, show that the mutation reprograms the CcpA regulon, specifically targeting transporters. This supports that membrane occupancy, rather than biosynthetic capacity, is the dominant constraint for the observed fitness enhancement. It also demonstrates that cells can modulate a pleiotropic regulator to work around limiting constraints.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer