Content area

Abstract

We propose a new method for representing data sets with a set of binary feature functions. We compute both the dyadic set structure determined by an order on the binary features together with the canonical product coefficient parameters for the associated dyadic measure and a variant of a nerve simplicial complex determined by the support of the dyadic measure together with its betti numbers. The product coefficient parameters characterize the relative skewness of the dyadic measure at dyadic scales and localities. The more abstract betti number statistics summarize the simplicial geometry of the support of the measure and satisfy a differential privacy property. Both types of statistics can be computed algorithmically from the binary feature representation of the data. This representation provides a new method for pre-processing data into automatically generated features which explicitly characterize the dyadic statistics and geometry of the data. useful for statistical fusion, decision-making, inference, multi-scale hypothesis testing and visualization. We illustrated the methods on a data quality data set. We exploit a representation lemma for dyadic measures on the unit interval (Fefferman, Kenig and Pipher) reformulated for measures on dyadic sets by Bassu, Jones, Ness and Shallcross. We prove that dyadic sets with dyadic measures have a canonical set of binary features and determine canonical nerve simplicial complexes. We compare our methods with other results for measures on sets with tree structures, recent multi-resolution theory, and persistent homology and suggest links to differential privacy, Bayesian reasoning and algebraic statistics.

Details

1009240
Title
Inference of a Dyadic Measure and its Simplicial Geometry from Binary Feature Data and Application to Data Quality
Publication title
arXiv.org; Ithaca
Publication year
2017
Publication date
Apr 29, 2017
Section
Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2017-05-03
Milestone dates
2017-04-29 (Submission v1)
Publication history
 
 
   First posting date
03 May 2017
ProQuest document ID
2074091731
Document URL
https://www.proquest.com/working-papers/inference-dyadic-measure-simplicial-geometry/docview/2074091731/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2022-08-08
Database
ProQuest One Academic