Content area

Abstract

The brittle star Ophionereis schayeri has abbreviated non-feeding development through a reduced ophiopluteus and a vitellaria larva. The metamorphic changes involved with development from a bilateral larva to a radial juvenile were examined in detail. The reduced ophiopluteus has a continuous ciliated band that breaks up into discontinuous ciliary ridges at the vitellaria stage. As the vitellaria develops, the juvenile rudiment forms in the mid-ventral region. The rudiment then undergoes a morphogenetic movement to the left of the larval anterior/posterior axis. This results in a dramatic transformation from bilateral to radial symmetry and is accompanied by development of juvenile structures and settlement, 6-7 days after fertilisation. Ophiuroid development through one larval stage, the ophiopluteus, is termed Type I; whereas development through two larval stages, the ophiopluteus and vitellaria, is termed Type II. We examined the evolutionary changes in the expression of Type II development in Ophionereis by comparing the ontogeny of six species with a range of larval forms. O. fasciata has the ancestral-like planktotrophic ophiopluteus. Vestigial pluteal structures in the larvae of O. schayeri, provide a link between ophiopluteal and vitellarial forms during evolution of non-feeding development. The diversity of larval forms in Ophionereis indicates that evolution of non-feeding development through a vitellaria (Type II) may have involved an increase in egg size, reduction of pluteal structures and shortening of the time to metamorphosis. Assessment of the phylogenetic significance of Types I and II development awaits additional comparative data on the metamorphic stages of other ophiuroid genera.

Details

Title
Metamorphosis and development evolution in Ophionereis (Echinodermata: Ophiuroidea)
Author
Selvakumaraswamy, P; Byrne, M
Pages
87-99
Publication year
2004
Publication date
Jul 2004
Publisher
Springer Nature B.V.
ISSN
00253162
e-ISSN
1432-1793
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
208072988
Copyright
Springer-Verlag 2004