It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the new era of the Internet of Things (IoT), all information related to the environment, things and humans is connected to networks. Humans, too, can be considered an integral part of the IoT ecosystem. The growing human-centricity of IoT applications raises the need greater dynamicity, heterogeneity, and scalability in future IoT systems. Recently, the IoT and cloud computing have both evolved as emerging technologies and have already become part of our daily life. The complementary features of the IoT and cloud are forming a new IT paradigm to meet current and future requirements. Due to the increased demand for and volume of IoT data, it has become a critical challenge to transfer data from the edge of the network to computing data centers due to the limitations of network bandwidth and higher latency delay. The emergence of the new paradigm of computing in the cloud computing architecture has made it necessary to overcome the inherent limitations of cloud computing, such as location awareness, scalability, energy efficiency, mobility, bandwidth bottlenecks, and latency delay. To address these issues, this paper proposes an efficient hybrid cloud architecture framework coupled with Li-Fi communication for a human-centric IoT network. It also introduces the architecture of the local cloud to reduce the latency delay and bandwidth cost and to improve efficiency, security, reliability and availability. Finally, the paper discusses the communication modulation schemes in the Li-Fi technique and presents scenarios involving the application of the proposed model in the real world.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Computer Science and Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul, South Korea
2 Department of Computer Science, School of Software, Soongsil University, Seoul, South Korea