It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It remains elusive if direct interspecies electron transfer (DIET) occurs in canonical syntrophy involving short-chain fatty acids oxidation. In the present study, we determined the effects of carbon nanomaterials on syntrophic oxidation of butyrate in two lake sediment enrichments and a defined coculture comprising Syntrophomonas wolfei and Methanococcus Maripaludis. After four continuous transfers of enrichment cultivation, Syntrophomonas dominated the bacterial populations in enrichments, and the dominated methanogens comprised Methanosarcina and Methanospirillum in one enrichment (from Weiming Lake) and Methanoregula and Methanospirillum in another (from Erhai Lake). Butyrate oxidation and CH4 production was significantly accelerated by carbon nanotubes (CNTs) in both enrichments. Replacement of CNTs by magnetite caused similar stimulating effect. For the defined coculture, two carbon nanomaterials, CNTs and reduced graphene oxide (rGO), were tested, both showed consistently stimulating effects on butyrate oxidation. Addition of kaolinite, an electric nonconductive clay mineral, however, revealed no effect. The test on M. maripaludis in pure culture showed no effect by rGO and a negative effect by CNTs (especially at a high concentration). Fluorescence in situ hybridization (FISH) and scanning electron microscopy (SEM) revealed that microbial cells were interwoven by CNTs forming cell-CNT mixture aggregates, and in case of rGO, cells were attached to surface or wrapped-up by rGO thin sheets. Collectively, our data suggest that the presence of conductive nanomaterials likely induces DIET in syntrophic butyrate oxidation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer