Abstract

Measuring water contents of magmas is fundamental to resolving a number of geological questions, such as the mechanisms of silicic magma evolution, the triggering of volcanic eruptions, and the formation of porphyry copper deposits. This study focuses on the correlation between apparent deviations from stoichiometry of plagioclase crystals and high water concentration in the magmatic melt from which they grew. We considered this relationship as a potential geo-hygrometer (water activity indicator). To test and potentially calibrate this new technique, a range of natural and experimental plagioclase crystals were analysed, with particular care taken to identify and avoid analytical bias and artefacts. In contrast to recently published material, we found no systematic aluminium excess in plagioclase, irrespective of the water concentration of the silicate melt it crystallised from. This suggests that aluminium excess in plagioclase cannot serve as a geo-hygrometer. The high likelihood of misinterpreting analytical artefacts (due to alkali migration and imprecise standardisation) as small deviations from stoichiometry, also requires its application as a mineral exploration tool to be treated with caution.

Details

Title
The influence of water in silicate melt on aluminium excess in plagioclase as a potential hygrometer
Author
Fiedrich, Alina M 1 ; Martin, Lukas H J 1 ; Julian-C Storck 1   VIAFID ORCID Logo  ; Ulmer, Peter 1 ; Heinrich, Christoph A 1 ; Bachmann, Olivier 1 

 Institute for Geochemistry and Petrology, Department of Earth Sciences, Zurich, Switzerland 
Pages
1-8
Publication year
2018
Publication date
Aug 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2090285930
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.