Full Text

Turn on search term navigation

Copyright © 2018 Qing Fu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

This paper presents strong fluorescence of spin-coated fluorescent solid organic dye films (SODF) enhanced by surface plasmonic resonance (SPR). In order to manifest the influence of SPR effect on enhancement of organic dye (OD) fluorescence, the organic dye embedded Ag@SiO2 fluorescent films were developed on the glass sheet substrate, in which Ag@SiO2 nanoparticles were embedded in the middle and organic dye was as upper layer. The morphology of the SODFs with and without Ag@SiO2 particles was studied by SEM and EDX, and the tests revealed that the Ag@SiO2 nanoparticles distributed evenly between glass sheet and OD layer. Optical properties were characterized by UV absorption and fluorescence spectroscopy; the lifetime of SODF was tested to discuss the mechanism of SPR enhancement of fluorescence. The results proved that the existence of Ag@SiO2 particles enhanced the fluorescence intensity for 7 times and thus proved the SPR effect for organic dye, especially when the organic dye is the solid films. Therefore, the most important is the creation that the SPR effect of Ag@SiO2 particles works very well under solid organic dye coverage.

Details

Title
SPR-Enhanced Fluorescence of Solid Organic Dye Films
Author
Fu, Qing 1 ; Zhang, Xiaolin 1 ; Yan, Peipei 1 ; Wang, Shichao 1 ; Wang, Xinzhi 1 ; Wang, Yao 1 ; Huang, Linjun 1 ; Wang, Yanxin 1 ; Liu, Haiyan 1 ; Belfiore, Laurence A 2   VIAFID ORCID Logo  ; Tang, Jianguo 1   VIAFID ORCID Logo 

 Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China 
 Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA 
Editor
Mohamed Bououdina
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2098671369
Copyright
Copyright © 2018 Qing Fu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/