Full Text

Turn on search term navigation

© 2018 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Behaviors are important indicators for assessing the health and well-being of dairy cows. The aim of this study is to develop and validate an ensemble classifier for automatically measuring and distinguishing several behavior patterns of dairy cows from accelerometer data and location data. The ensemble classifier consists of two parts, our new Multi-BP-AdaBoost algorithm and a data fusion method based on D-S evidence theory. We identify seven behavior patterns: feeding, lying, standing, lying down, standing up, normal walking, and active walking. Accuracy, sensitivity, and precision were used to validate classification performance. The Multi-BP-AdaBoost algorithm performed well when identifying lying (92% accuracy, 93% sensitivity, 82% precision), lying down (99%, 82%, 86%), standing up (99%, 74%, 85%), normal walking (97%, 92%, 86%), and active walking (99%, 94%, 89%). Its results were poor for feeding (80%, 52%, 55%) and standing (80%, 46%, 58%), which are difficult to differentiate using a leg-mounted sensor. Position data made it possible to differentiate feeding and standing. The D-S evidence fusion method for combining accelerometer data and location data in classification was used to fuse two pieces of basic behavior-related evidence into a single estimation model. With this addition, the sensitivity and precision of the two difficult behaviors increased by approximately 20 percentage points. In conclusion, the classification results indicate that the ensemble classifier effectively recognizes various behavior patterns in dairy cows. However, further work is needed to study the robustness of the feature and model by increasing the number of cows enrolled in the trial.

Details

Title
Development and validation of an ensemble classifier for real-time recognition of cow behavior patterns from accelerometer data and location data
Author
Wang, Jun; ⨯ Zhitao He; Zheng, Guoqiang; Gao, Song; Zhao, Kaixuan
First page
e0203546
Section
Research Article
Publication year
2018
Publication date
Sep 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2100862096
Copyright
© 2018 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.