Abstract

The aim of this review was to analyze/investigate the synthesis, properties, and applications of polyvinyl alcohol–halloysite nanotubes (PVA–HNT), and their nanocomposites. Different polymers with versatile properties are attractive because of their introduction and potential uses in many fields. Synthetic polymers, such as PVA, natural polymers like alginate, starch, chitosan, or any material with these components have prominent status as important and degradable materials with biocompatibility properties. These materials have been developed in the 1980s and are remarkable because of their recyclability and consideration of the natural continuation of their physical and chemical properties. The fabrication of PVA–HNT nanocomposites can be a potential way to address some of PVA’s limitations. Such nanocomposites have excellent mechanical properties and thermal stability. PVA–HNT nanocomposites have been reported earlier, but without proper HNT individualization and PVA modifications. The properties of PVA–HNT for medicinal and biomedical use are attracting an increasing amount of attention for medical applications, such as wound dressings, drug delivery, targeted-tissue transportation systems, and soft biomaterial implants. The demand for alternative polymeric medical devices has also increased substantially around the world. This paper reviews individualized HNT addition along with crosslinking of PVA for various biomedical applications that have been previously reported in literature, thereby showing the attainability, modification of characteristics, and goals underlying the blending process with PVA.

Details

Title
Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites
Author
Tayser Sumer Gaaz; Abu Bakar Sulong; Akhtar, Majid Niaz; Abdul Amir H Kadhum; Abu Bakar Mohamad; Al-Amiery, Ahmed A
First page
22833
Publication year
2015
Publication date
2015
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108540088
Copyright
© 2015. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.