It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Full-scale wind turbine is a mature technology and therefore several retrofitting techniques have recently been spreading in the industry to further improve the efficiency of wind kinetic energy conversion. This kind of interventions is costly and, furthermore, the energy improvement is commonly estimated under the hypothesis of ideal wind conditions, but real ones can be very different because of wake interactions and/or wind shear induced by the terrain. A precise quantification of the energy gained in real environment is therefore precious. Wind turbines are subjected to non-stationary conditions and therefore it makes little sense to compare energy production before and after an upgrade: the post-upgrade production should rather be compared to a model of the pre-upgrade production under the same conditions. Since the energy improvement is typically of the order of few percents, a very precise model of wind turbine power output is needed and therefore it should be data-driven. Furthermore, the formulation of the model is heavily affected by the features of the available data set and by the nature of the problem. The objective of this work is the discussion of some wind turbine power curve upgrades on the grounds of operational data analysis. The selected test cases are: improved start-up through pitch angle adjustment near the cut-in, aerodynamic blade retrofitting by means of vortex generators and passive flow control devices, and extension of the power curve through a soft cut-out strategy for very high wind speed. The criticality of each test case is discussed and appropriate data-driven models are formulated. These are employed to estimate the energy improvement from each of the upgrades under investigation. The general outcome of this work is a catalog of generalizable methods for studying wind turbine power curve upgrades. In particular, from the study of the selected test cases, it arises that complex wind conditions might affect wind turbine operation such that the production improvement is non-negligibly different from what can be estimated under the hypothesis of ideal wind conditions. A complex wind flow might actually impact on the efficiency of vortex generators and the soft cut-out strategies at high wind speeds. The general lesson is therefore that it is very important to estimate wind turbine upgrades on real environments through operational data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




