It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
MicroRNAs (miRNAs) act as biomarkers for the diagnosis of a variety of cancers. Since the currently used methods for miRNA detection have limitations, simple, sensitive, and cost-effective methods for the detection of miRNA are required. This work demonstrates a facile, quencher-free, fluorescence-based analytical method for cost-effective and sensitive detection of miRNA using a super 2-aminopurine (2-AP)-labeled hairpin probe (HP) and exonuclease I activity. Specifically, the fluorescence of 2-AP is strongly quenched when it is incorporated within DNA. In the presence of a target miRNA, HP attains an open conformation by hybridizing with the target miRNA to form a double-stranded structure with a protruding 3′-terminus. Next, the digestion of the protruding 3′-terminus is triggered by exonuclease I, during which 2-AP is released free in solution from the DNA, thereby increasing fluorescence. This method is highly sensitive, with a detection limit of 0.5 nM—10 times lower than a previously reported quencher-free fluorescence method. Furthermore, this method has potential applications in clinical diagnosis and biomedical research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer