It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Parametric statistical models for insurance claims severity are continuous, right-skewed, and frequently heavy-tailed. The data sets that such models are usually fitted to contain outliers that are difficult to identify and separate from genuine data. Moreover, due to commonly used actuarial “loss control strategies,” the random variables we observe and wish to model are affected by truncation (due to deductibles), censoring (due to policy limits), scaling (due to coinsurance proportions) and other transformations. In the current practice, statistical inference for loss models is almost exclusively likelihood (MLE) based, which typically results in non-robust parameter estimators, pricing models, and risk measures. To alleviate the lack of robustness of MLE-based inference in risk modeling, two broad classes of parameter estimators - Method of Trimmed Moments (MTM) and Method of Winsorized Moments (MWM) - have been recently developed. MTM and MWM estimators are sufficiently general and flexible, and possess excellent large- and small- sample properties, but they were designed for complete (not transformed) data. In this dissertation, we first redesign MTM estimators to be applicable to claim severity models that are fitted to truncated, censored, and insurance payments data. Asymptotic properties of such estimators are thoroughly investigated and their practical performance is illustrated using Norwegian fire claims data. In addition, we explore several extensions of MTM and MWM estimators for complete data. In particular, we introduce truncated, censored, and insurance payment-type estimators and study their asymptotic properties. Our analysis establishes new connections between data truncation, trimming, and censoring which paves the way for more effective modeling of non-linearly transformed loss data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer