Abstract

Irrigation salinity is a common environmental threat for sustainable development in the Keriya Oasis, arid Northwest China. It is mainly caused by unreasonable land management and excessive irrigation. The aim of this study was to assess and map the salinity risk distribution by developing a composite risk index (CRI) for seventeen risk parameters from traditional and scientific fields, based on maximizing deviation method and analytic hierarchy process, the grey relational analysis and the Pressure-State-Response (PSR) sustainability framework. The results demonstrated that the northern part of the Shewol and Yeghebagh village has a very high salinity risk, which might be caused by flat and low terrain, high subsoil total soluble salt, high groundwater salinity and shallow groundwater depth. In contrast, the southern part of the Oasis has a low risk of salinity because of high elevation, proper drainage conditions and a suitable groundwater table. This achievement has shown that southern parts of the Oasis are suitable for irrigation agriculture; for the northern area, there is no economically feasible solution but other areas at higher risk can be restored by artificial measures. Therefore, this study provides policy makers with baseline data for restoring the soil salinity within the Oasis.

Details

Title
Irrigation Salinity Risk Assessment and Mapping in Arid Oasis, Northwest China
Author
Seydehmet, Jumeniyaz; Guang-Hui Lv; Abliz, Abdugheni; Qing-Dong, Shi; Abliz, Abdulla; Turup, Abdusalam
First page
966
Publication year
2018
Publication date
2018
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2108739230
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.