It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper investigates the problem of an optimal sensor placement for better shape deformation sensing of a new antenna structure with embedded or attached Fiber Bragg grating (FBG) strain sensors. In this paper, the deformation shape of the antenna structure is reconstructed using a strain–displacement transformation, according to the measured discrete strain data from limited FBG strain sensors. Moreover, a two-stage sensor placement method is proposed using a derived relative reconstruction error equation. In this method, the initial sensor locations are determined using the principal component analysis based on orthogonal trigonometric (i.e., QR) decomposition, and then a new location is sequentially added into the initial sensor locations one by one by minimizing the relative reconstruction error considering information redundancy. The numerical simulations are conducted, and the comparisons show that the proposed method is advantageous in terms of the sensor distribution and computational cost. Experimental validation is performed using an antenna experimental platform equipped with an optimal FBG strain sensor configuration, and the reconstruction results show good agreements with those measured directly from displacement sensors. The proposed method has a large potential for the strain sensor placement of complex structures, and the proposed antenna structure with FBG strain sensors can be applied to the future wing-skin antenna or flexible space-based antenna.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer