It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Brain–computer interfaces (BCI) using electroencephalography provide a noninvasive method for users to interact with external devices without the need for muscle activation. While noninvasive BCIs have the potential to improve the quality of lives of healthy and motor-impaired individuals, they currently have limited applications due to inconsistent performance and low degrees of freedom. In this study, we use deep learning (DL)-based decoders for online continuous pursuit (CP), a complex BCI task requiring the user to track an object in 2D space. We developed a labeling system to use CP data for supervised learning, trained DL-based decoders based on two architectures, including a newly proposed adaptation of the PointNet architecture, and evaluated the performance over several online sessions. We rigorously evaluated the DL-based decoders in a total of 28 human participants, and found that the DL-based models improved throughout the sessions as more training data became available and significantly outperformed a traditional BCI decoder by the last session. We also performed additional experiments to test an implementation of transfer learning by pretraining models on data from other subjects, and midsession training to reduce intersession variability. The results from these experiments showed that pretraining did not significantly improve performance, but updating the models’ midsession may have some benefit. Overall, these findings support the use of DL-based decoders for improving BCI performance in complex tasks like CP, which can expand the potential applications of BCI devices and help to improve the quality of lives of healthy and motor-impaired individuals.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer