It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Fast radio bursts (FRBs), bright transients with millisecond durations at ∼GHz and typical redshifts probably >0.8, are likely to be gravitationally lensed by intervening galaxies. Since the time delay between images of strongly lensed FRB can be measured to extremely high precision because of the large ratio ∼109 between the typical galaxy-lensing delay time \[\sim{\cal O}\] (10 days) and the width of bursts \[\sim{\cal O}\] (ms), we propose strongly lensed FRBs as precision probes of the universe. We show that, within the flat ΛCDM model, the Hubble constant H0 can be constrained with a ~0.91% uncertainty from 10 such systems probably observed with the square kilometer array (SKA) in <30 years. More importantly, the cosmic curvature can be model independently constrained to a precision of ∼0.076. This constraint can directly test the validity of the cosmological principle and break the intractable degeneracy between the cosmic curvature and dark energy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Astronomy, Beijing Normal University, Beijing, China
2 School of Physics and Technology, Wuhan University, Wuhan, China
3 Department of Physics and Astronomy, University of Nevada, Las Vegas, NV, USA; National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing, China; Department of Astronomy, School of Physics and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, China