It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Autophagy is a well-described degradation mechanism that promotes cell survival upon nutrient starvation and other forms of cellular stresses. In addition, there is growing evidence showing that autophagy can exert a lethal function via autophagic cell death (ACD). As ACD has been implicated in apoptosis-resistant glioblastoma (GBM), there is a high medical need for identifying novel ACD-inducing drugs. Therefore, we screened a library containing 70 autophagy-inducing compounds to induce ATG5-dependent cell death in human MZ-54 GBM cells. Here, we identified three compounds, i.e. loperamide, pimozide, and STF-62247 that significantly induce cell death in several GBM cell lines compared to CRISPR/Cas9-generated ATG5- or ATG7-deficient cells, pointing to a death-promoting role of autophagy. Further cell death analyses conducted using pharmacological inhibitors revealed that apoptosis, ferroptosis, and necroptosis only play minor roles in loperamide-, pimozide- or STF-62247-induced cell death. Intriguingly, these three compounds induce massive lipidation of the autophagy marker protein LC3B as well as the formation of LC3B puncta, which are characteristic of autophagy. Furthermore, loperamide, pimozide, and STF-62247 enhance the autophagic flux in parental MZ-54 cells, but not in ATG5 or ATG7 knockout (KO) MZ-54 cells. In addition, loperamide- and pimozide-treated cells display a massive formation of autophagosomes and autolysosomes at the ultrastructural level. Finally, stimulation of autophagy by all three compounds is accompanied by dephosphorylation of mammalian target of rapamycin complex 1 (mTORC1), a well-known negative regulator of autophagy. In summary, our results indicate that loperamide, pimozide, and STF-62247 induce ATG5- and ATG7-dependent cell death in GBM cells, which is preceded by a massive induction of autophagy. These findings emphasize the lethal function and potential clinical relevance of hyperactivated autophagy in GBM.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
2 Experimental Neurosurgery, Goethe-University Hospital, Frankfurt, Germany
3 Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
4 Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
5 Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany