Full Text

Turn on search term navigation

© 2018 Koukouvinis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The impact of a laser pulse onto a liquid metal droplet is numerically investigated by utilising a weakly compressible single phase model; the thermodynamic closure is achieved by the Tait equation of state (EoS) for the liquid metal. The smoothed particle hydrodynamics (SPH) method, which has been employed in the arbitrary Lagrangian Eulerian (ALE) framework, offers numerical efficiency, compared to grid related discretization methods. The latter would require modelling not only of the liquid metal phase, but also of the vacuum, which would necessitate special numerical schemes, suitable for high density ratios. In addition, SPH-ALE allows for the easy deformation handling of the droplet, compared to interface tracking methods where strong mesh deformation and most likely degenerate cells occur. Then, the laser-induced deformation of the droplet is simulated and cavitation formation is predicted. The ablation pattern due to the emitted shock wave and the two low pressure lobes created in the middle of the droplet because of the rarefaction waves are demonstrated. The liquid metal droplet is subject to material rupture, when the shock wave, the rarefaction wave and the free surface interact. Similar patterns regarding the wave dynamics and the hollow structure have been also noticed in prior experimental studies.

Details

Title
Smoothed particle hydrodynamics simulation of a laser pulse impact onto a liquid metal droplet
Author
Koukouvinis, Phoevos; ⨯ Nikolaos Kyriazis; ⨯ Manolis Gavaises
First page
e0204125
Section
Research Article
Publication year
2018
Publication date
Sep 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2112162466
Copyright
© 2018 Koukouvinis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.