It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Photocatalytic hydrogen evolution is a promising technique for the direct conversion of solar energy into chemical fuels. Colloidal quantum dots with tunable band gap and versatile surface properties remain among the most prominent targets in photocatalysis despite their frequent toxicity, which is detrimental for environmentally friendly technological implementations. In the present work, all-inorganic sulfide-capped InP and InP/ZnS quantum dots are introduced as competitive and far less toxic alternatives for photocatalytic hydrogen evolution in aqueous solution, reaching turnover numbers up to 128,000 based on quantum dots with a maximum internal quantum yield of 31%. In addition to the favorable band gap of InP quantum dots, in-depth studies show that the high efficiency also arises from successful ligand engineering with sulfide ions. Due to their small size and outstanding hole capture properties, sulfide ions effectively extract holes from quantum dots for exciton separation and decrease the physical and electrical barriers for charge transfer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, China; Department of Chemistry, University of Zurich, Zurich, Switzerland
2 Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
3 Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
4 Department of Chemistry, University of Zurich, Zurich, Switzerland
5 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, China