It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Gibbs energy, G, determines the equilibrium conditions of chemical reactions and materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for only a small fraction of known inorganic compounds, impeding a comprehensive perspective on the effects of temperature and composition on materials stability and synthesizability. Here, we use the SISSO (sure independence screening and sparsifying operator) approach to identify a simple and accurate descriptor to predict G for stoichiometric inorganic compounds with ~50 meV atom−1 (~1 kcal mol−1) resolution, and with minimal computational cost, for temperatures ranging from 300–1800 K. We then apply this descriptor to ~30,000 known materials curated from the Inorganic Crystal Structure Database (ICSD). Using the resulting predicted thermochemical data, we generate thousands of temperature-dependent phase diagrams to provide insights into the effects of temperature and composition on materials synthesizability and stability and to establish the temperature-dependent scale of metastability for inorganic compounds.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
2 Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO, USA; National Renewable Energy Laboratory, Golden, CO, USA
3 National Renewable Energy Laboratory, Golden, CO, USA
4 Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; National Renewable Energy Laboratory, Golden, CO, USA; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
5 Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; National Renewable Energy Laboratory, Golden, CO, USA