Full text

Turn on search term navigation

© 2018 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Regular usage of NaOH/NaClO disinfectants results in high sodium salt and alkalinity of poultry manure. This study compared three amendments: vegetable waste (V), food waste (F) and mature compost (C) for their ability to improve the composting of NaOH/NaClO-contaminated poultry manure. C compost resulted in the highest compost temperatures (p<0.001) and greatest reduction in OM, TC, TN and NH4-N (p<0.05). C and V composts were more efficient at lowering extractable-Na (ext-Na) and electrical conductivity (EC) than F (p<0.05). Maturity was primarily indicated by NH4-N, EC and ext-Na. Bacterial dynamics was profoundly influenced by NH4-N, EC and TC, with the decrease leading to discriminate genera shift from Sinibacillus and Thiopseudomonas to Brevbacterium, Brachybacterium, and Microbacterium. These findings suggest that mature compost was more desirable amendment than vegetable and food waste in the composting of NaOH/NaClO-contaminated poultry manure, and the decrease of ext-Na indicated compost maturity but did not influence bacterial dynamics.

Details

Title
Evaluation of compost, vegetable and food waste as amendments to improve the composting of NaOH/NaClO-contaminated poultry manure
Author
Liu, Yuting; Wang, Wenxia; Xu, Jianqiang; Xue, Hongyu; Stanford, Kim; McAllister, Tim A; Weiping Xu ⨯
First page
e0205112
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2118379823
Copyright
© 2018 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.