Full text

Turn on search term navigation

© 2018 Niemirowicz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nowadays, most reverse genetics approaches in Trypanosoma brucei, a protozoan parasite of medical and veterinary importance, rely on pre-established cell lines. Consequently, inducible experimentation is reduced to a few laboratory strains. Here we described a new transgene expression system based exclusively on endogenous transcription activities and a minimum set of regulatory components that can easily been adapted to different strains. The pTbFIX vectors are designed to contain the sequence of interest under the control of an inducible rRNA promoter along with a constitutive dicistronic unit encoding a nucleus targeted tetracycline repressor and puromycin resistance genes in a tandem “head-to-tail” configuration. Upon doxycycline induction, the system supports regulatable GFP expression (170 to 400 fold) in both bloodstream and procyclic T. brucei forms. Furthermore we have adapted the pTbFIX plasmid to perform RNAi experimentation. Lethal phenotypes, including α-tubulin and those corresponding to the enolase and clathrin heavy chain genes, were successfully recapitulated in procyclic and bloodstream parasites thus showing the versatility of this new tool.

Details

Title
Simplified inducible system for Trypanosoma brucei
Author
Niemirowicz, Gabriela T; Cazzulo, Juan J; Álvarez, Vanina E; León A Bouvier ⨯
First page
e0205527
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2118383270
Copyright
© 2018 Niemirowicz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.