Full Text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bamboo-dominated forests comprise 1 % of the world's forests and 3 % of the Amazon forests. The Guadua spp. bamboos that dominate the southwest Amazon are semelparous; thus flowering and fruiting occur once in a lifetime before death. These events occur in massive spatially organized patches every 28 years and produce huge quantities of necromass. The bamboo–fire hypothesis argues that increased dry fuel after die-off enhances fire probability, creating opportunities that favor bamboo growth. In this study, our aim is to map the bamboo-dominated forests and test the bamboo–fire hypothesis using satellite imagery. Specifically, we developed and validated a method to map the bamboo die-off and its spatial distribution using satellite-derived reflectance time series from the Moderate Resolution Imaging Spectroradiometer (MODIS) and explored the bamboo–fire hypothesis by evaluating the relationship between bamboo die-off and fires detected by the MODIS thermal anomalies product in the southwest Amazon. Our findings show that the near-infrared (NIR) is the most sensitive spectral interval to characterize bamboo growth and cohort age. Automatic detection of historical bamboo die-off achieved an accuracy above 79 %. We mapped and estimated 15.5 million ha of bamboo-dominated forests in the region. The bamboo–fire hypothesis was not supported because only a small fraction of bamboo areas burned during the analysis timescale, and, in general, bamboo did not show higher fire probability after the die-off. Nonetheless, fire occurrence was 45 % higher in dead than live bamboo in drought years, associated with ignition sources from land use, suggesting a bamboo–human–fire association. Although our findings show that the observed fire was not sufficient to drive bamboo dominance, the increased fire occurrence in dead bamboo in drought years may contribute to the maintenance of bamboo and potential expansion into adjacent bamboo-free forests. Fire can even bring deadly consequences to these adjacent forests under climate change effects.

Details

Title
Life cycle of bamboo in the southwestern Amazon and its relation to fire events
Author
Dalagnol, Ricardo 1 ; Fabien Hubert Wagner 1   VIAFID ORCID Logo  ; Lênio Soares Galvão 1 ; Bruce Walker Nelson 2   VIAFID ORCID Logo  ; Luiz Eduardo Oliveira e Cruz de Aragão 3 

 Remote Sensing Division, National Institute for Space Research – INPE, São José dos Campos, SP, 12227-010, Brazil 
 Environmental Dynamics Department, National Institute of Amazonian Research – INPA, Manaus, AM, 69067-375, Brazil 
 Remote Sensing Division, National Institute for Space Research – INPE, São José dos Campos, SP, 12227-010, Brazil; College of Life and Environmental Sciences, University of Exeter, EX4 4RJ, UK 
Pages
6087-6104
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2121268036
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.