Full Text

Turn on search term navigation

Copyright © 2018 Xiaona Pan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

A hexagonal prism CuSn alloy was prepared at room temperature from 1-ethyl-3-methylimidazolium dicyanamide ([Emim][DCA]) by the direct template-free electrodeposition method with different concentrations of Cu(I) and Sn(II) at a low current density of 0.04 A dm−2. Moreover, the electrodeposition time was also investigated, and the results indicated that the composition of the CuSn alloy became complex and the structure turned unstable with expanding time. The cycling performance of the hexagonal prism-structural CuSn electrode was investigated, with the first discharge capacity of 345 mAh g−1 and a discharge capacity of about 210 mAh g−1 after 10 cycles.

Details

Title
Template-Free Electrochemical Preparation of Hexagonal CuSn Prism-Structural Electrode for Lithium-Ion Batteries
Author
Pan, Xiaona 1 ; Zhang, Haiyan 2 ; Wen, Xiaoyu 1 ; Zhang, Jinqiu 1 ; An, Maozhong 1 ; Yang, Peixia 1   VIAFID ORCID Logo 

 MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China 
 College of Life Science, Henan University, Kaifeng 475004, China 
Editor
Linqin Mu
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
16874110
e-ISSN
16874129
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2123604779
Copyright
Copyright © 2018 Xiaona Pan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/