Full text

Turn on search term navigation

© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Exposure to fine particulate matter (PM2.5) is associated with adverse health impacts on the population. Satellite observations and machine learning algorithms have been applied to improve the accuracy of the prediction of PM2.5 concentrations. In this study, we developed a PM2.5 retrieval approach using machine-learning methods, based on aerosol products from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the NASA Earth Observation System (EOS) Terra and Aqua polar-orbiting satellites, near-ground meteorological variables from the NASA Goddard Earth Observing System (GEOS), and ground-based PM2.5 observation data. Four models, which are orthogonal regression (OR), regression tree (Rpart), random forests (RF), and support vector machine (SVM), were tested and compared in the Beijing–Tianjin–Hebei (BTH) region of China in 2015. Aerosol products derived from the Terra and Aqua satellite sensors were also compared. The 10-repeat 5-fold cross-validation (10 × 5 CV) method was subsequently used to evaluate the performance of the different aerosol products and the four models. The results show that the performance of the Aqua dataset was better than that of the Terra dataset, and that the RF algorithm has the best predictive performance (Terra: R = 0.77, RMSE = 43.51 μg/m3; Aqua: R = 0.85, RMSE = 33.90 μg/m3). This study shows promise for predicting the spatiotemporal distribution of PM2.5 using the RF model and Aqua aerosol product with the assistance of PM2.5 site data.

Details

Title
Retrieval of Daily PM2.5 Concentrations Using Nonlinear Methods: A Case Study of the Beijing–Tianjin–Hebei Region, China
Author
Li, Lijuan; Chen, Baozhang; Zhang, Yanhu; Zhao, Youzheng; Yue Xian; Xu, Guang; Zhang, Huifang; Guo, Lifeng
Publication year
2018
Publication date
Dec 2018
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2303929932
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.