Full text

Turn on search term navigation

© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We consider the superposition of two semiclassical solutions of the Wheeler–DeWitt equation for a de Sitter universe, describing a quantized scalar vacuum propagating in a universe that is contracting in one case and expanding in the other, each identifying the opposite cosmological arrow of time. We discuss the suppression of the interference terms between the two arrows of time due to environment-induced decoherence caused by modes of the scalar vacuum crossing the Hubble horizon. Furthermore, we quantify the effect of the interference on the expectation value of the observable field mode correlations, with respect to an observer that we identify with the spatial geometry.

Details

Title
The Decoherence and Interference of Cosmological Arrows of Time for a de Sitter Universe with Quantum Fluctuations
Author
Rotondo, Marcello; Nambu, Yasusada
Publication year
2018
Publication date
Jun 2018
Publisher
MDPI AG
e-ISSN
22181997
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2124793088
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.