Content area

Abstract

Starting from N=4\[ \mathcal{N}=4 \] SYM and using an appropriate Higgs mechanism we reconsider the construction of a scalar field theory non-minimally coupled to a Coulomb potential with a relativistic SO(4) symmetry and check for scalar field consistency conditions. This scalar field theory can also be obtained from a relativistic particle Lagrangian with a proper implementation of the non-minimal coupling. We provide the generalization of the non-relativistic construction of the Runge-Lenz vector to the relativistic case and show explicitly that this new vector generates the SO(4) algebra. Using the power of the SO(4) symmetry, we calculate the relativistic hydrogen atom spectrum. We provide a generalization of the Kustaanheimo-Stiefel transformation to the relativistic case and relate our results with the corresponding relativistic oscillator. Finally, in the light of these results, we reconsider the calculation of the hydrogen atom spectrum from the cusp anomalous dimension given in [2].

Details

Title
Relativistic Runge-Lenz vector: from N = 4 \[ \mathcal{N}=4 \] SYM to SO(4) scalar field theory
Author
Alvarez-Jimenez, J 1 ; Cortese, I 1 ; García, J Antonio 1 ; Gutiérrez-Ruiz, D 1 ; Vergara, J David 1 

 Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, México 
Pages
1-17
Publication year
2018
Publication date
Oct 2018
Publisher
Springer Nature B.V.
e-ISSN
10298479
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2125154368
Copyright
Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.