It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Fluorescence in situ hybridization (FISH) is the primary technology used to image and count mRNA in single cells, but applications of the technique are limited by photophysical shortcomings of organic dyes. Inorganic quantum dots (QDs) can overcome these problems but years of development have not yielded viable QD-FISH probes. Here we report that macromolecular size thresholds limit mRNA labeling in cells, and that a new generation of compact QDs produces accurate mRNA counts. Compared with dyes, compact QD probes provide exceptional photostability and more robust transcript quantification due to enhanced brightness. New spectrally engineered QDs also allow quantification of multiple distinct mRNA transcripts at the single-molecule level in individual cells. We expect that QD-FISH will particularly benefit high-resolution gene expression studies in three dimensional biological specimens for which quantification and multiplexing are major challenges.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
2 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Intelligent Devices and Systems Research Group, DGIST, Hyeonpung, Daegu, Republic of Korea
3 Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
4 Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, USA
5 Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
6 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, Urbana, IL, USA