It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Actinomycetes are known to produce various lytic enzymes such as chitinase which have different biotechnological aspects. Plackett–Burman design (PBD) was applied to evaluate significant components of medium to improve chitinase enzyme production. Response surface methodology was implemented to select those variables which are highly fitted in the model and helped in increasing enzyme production. A second experiment was performed as one of the major applications of statistically optimized and purified chitinase (method and result of purification not shown) for reducing root-knot nematode infection in roots known for causing diseases in plants. Among them, Meloidogyne sp. is one which is responsible for decreasing plant growth and fruit yield. For this, Meloidogyne sp. (1000 J2 stage) was used to infect Vigna radiata (mung) plant which was previously coated with formulations of purified chitinase and organic manure ratio—1:1 (w/w).
Results
From ANOVA results of PBD data analysis, it was confirmed that colloidal chitin, xylose, peptone and dihydrogen potassium phosphate were found to be significant components for chitinase enzyme production. The best combination of factors (gm) to accomplish the optimum response was found to be colloidal chitin: 1.0, xylose: 2.0, peptone: 0.6 and dihydrogen potassium phosphate: 0.25 for predicted response of 3.81. Seeds coated with purified chitinase (5 ml) isolated from Streptomyces rubiginosusSP24 helped in enhancing plant growth promotion and decreasing root-knot nematode infection.
Conclusion
Statistically optimized seeds of mung coated with purified chitinase was used for suppressing plant-parasitic nematodes which cause severe harm to the production of crops in terms of plant growth and fruit yield.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India