Ca2+是非常重要的细胞内第二信使,参与肌细胞收缩、神经递质释放、细胞分化和细胞凋亡等生理、病理过程。细胞内生理Ca2+浓度为10 nM-100 nM,Ca2+超载时浓度为基础浓度的10倍左右,与心脏疾病、神经损伤、肿瘤发生等多种疾病的发生发展密切相关[1]。H2O2是常见的活性氧分子,向细胞外液加入H2O2,可以使细胞处于氧化应激状态,文献[2]报道Ca2+介导了H2O2作用下的大鼠胰腺腺泡AR42J细胞的凋亡。肺癌是世界范围内常见的恶性肿瘤,研究[3-5]表明,引起胞浆Ca2+浓度升高的刺激通过依赖线粒体途径的caspases通路或内质网应激途径,诱导肺癌细胞发生凋亡。实时监测肺癌细胞内Ca2+浓度和胞浆内Ca2+水平,有助于深入研究Ca2+介导肺癌细胞凋亡的分子机制,以寻找促进肺癌细胞凋亡的有效方法。
自1989年开始,应用荧光染料fluo-3对细胞内Ca2+成像,揭示了很多涉及Ca2+信号时空变化的细胞生物学功能。Fluo-3也结合流式细胞仪用于检测Ca2+作为第二信使参与信号转导和细胞药理学筛选等实验研究。Fluo-3用于监测活细胞内[Ca2+]i变化,其最主要的优势在于利用488 nm的氩离子激光源,可以在激光扫描共聚焦显微镜下观察,fluo-3与Ca2+结合后其荧光强度迅速增强。Fluo-4是fluo-3的衍生物,用F取代了fluo-3分子中的2个Cl。其激发波长较fluo-3更接近488 nm,产生更强、更稳定的荧光信号,适合于多数配置氩离子激光器的激光扫描共聚焦显微镜观察[6],也可以用于流式细胞仪检测,以及利用多功能酶标仪读取荧光信号[7]。
本研究采用目前实验室常用的Ca2+荧光探针fluo-3和fluo-4负载人肺癌A549细胞,观察H2O2处理的A549细胞中[Ca2+]i变化,对fluo-3和fluo-4的荧光强度和[Ca2+]i测定值进行比较和分析,并探讨在H2O2作用下细胞凋亡情况。
1 材料与方法
1.1 主要试剂与仪器
Fluo-3 AM(Biotium公司,纯度95%)和fluo-4 AM(DOJINDO公司,纯度98%),均用DMSO溶解,0.22 μm滤膜过滤除菌,贮存液浓度为1mM,-20 oC避光保存。RPMI-1640培养基和胎牛血清为Hyclone公司产品,激光共聚焦显微镜专用培养皿(35 mm)购自NEST公司,Ionomycin和细胞固定液均为碧云天公司产品,DAPI细胞凋亡染色试剂盒购自凯基公司,H2O2为国产分析纯。
1.2 细胞培养
采用含10%胎牛血清的RPMI-1640培养基,于37 oC、5%CO2培养箱中培养肺癌细胞A549,0.25%胰酶-EDTA消化传代,所有实验均采用对数生长期细胞。
1.3 探针负载细胞并观察[Ca2+]i变化
荧光探针fluo-3 AM和fluo-4 AM负载细胞时用无Ca2+细胞外液(135 mM NaCl、2 mM KCl、2 mM MgCl2、10 mM HEPES、4 g/L葡萄糖)稀释成工作浓度5 μM。细胞传代24 h后,弃去培养基,用PBS漂洗3次,向细胞中加入fluo-3(5 μM)或fluo-4(5 μM)工作液,避光37 oC孵育40 min。弃去荧光探针,更换新的无Ca2+细胞外液,避光37 oC继续孵育20 min,保证AM在细胞内被充分水解。在FV1000型激光共聚焦显微镜(Olympus, Japan)下观察选择贴壁良好、形态伸展、荧光强度较亮的细胞,设置扫描条件为488 nm波长激发、39%激光强度、PMT(790)、Pinhole(310 μm)、同时采集DIC图像,每5 s采集一幅,共采集40 min左右。首先扫描10幅待荧光强度曲线稳定后,向细胞中加入不同浓度的H2O2(5 mM、10 mM或50 mM);曲线稳定后,向细胞中加入EGTA(4 mM)+ Ionomycin(5 μM);曲线再一次稳定后,向细胞中加入CaCl2(10 mM),曲线稳定后中止实验。钙离子浓度计算公式为Kd(FFmin)/(Fmax-F)[8],其中fluo-3探针Kd=400 nM,fluo-4探针Kd=360 nM。
1.4 DAPI染色检测细胞凋亡
细胞经H2O2处理30 min后,用细胞固定液4%多聚甲醛室温固定10 min,加入DAPI染色液避光孵育20 min,在倒置荧光显微镜下观察,随机选取5个200×镜下视野,计算凋亡细胞百分比。
1.5 统计学分析
采用SPSS13.0统计学软件,进行数据分析及处理。应用t检验比较fluo-3和fluo-4平均荧光强度的差异,应用χ2检验比较凋亡细胞百分比,P< 005为差异有统计学意义。
2 结果
2.1 未经H2O2刺激前细胞中fluo-3和fluo-4染色结果比较
在相同的细胞负载和图像采集条件下,未加H2O2处理时,fluo-3染色后的细胞在488 nm激发光激发下发出较弱的绿色荧光(图1)。Fluo-4染色后的细胞在488 nm激发光激发下发出较强的绿色荧光(图1)。
2.2 H2O2处理的细胞[Ca2+]i变化
在5 mM或10 mM H2O2作用下,fluo-3和fluo-4荧光强度均无明显变化(结果未显示)。加入50 mM H2O2后,细胞荧光强度逐渐增强(图2),观察至40 min左右时,荧光强度曲线稳定不再变化(图3)。在实时观察[Ca2+]i变化过程中,荧光探针fluo-3和fluo-4均未出现光漂白现象。观察结束时,fluo-3荧光强度增加至3.0倍,fluo-4荧光强度增加至2.6倍。H2O2刺激前,fluo-4荧光强度约是fluo-3荧光强度的2.0倍,而H2O2刺激后fluo-4荧光强度约是fluo-3荧光强度的1.8倍(表1)。通过公式计算发现采用fluo-3探针负载的选定细胞中[Ca2+]i变化范围是112.2 nM-1,069.6 nM,采用fluo-4探针负载的选定细胞中[Ca2+]i变化范围是7.6 nM-505.4 nM。
2.3 H2O2诱导细胞凋亡
细胞经H2O2刺激后固定,DAPI染色后发现,凋亡细胞呈现核固缩且染色加深,核染色质聚集于核膜一边,或核碎裂成大小不等的圆形小体(图4B),而对照组细胞核形态规则、染色均匀,呈蓝白色荧光(图4A)。结果显示与对照组细胞相比,H2O2处理的细胞凋亡率明显增加(12.2%±2.3% vs 33.4%±3.2%),有统计学意义(P< 0001)。
图 1 HO刺激前,负载fluo-3或fluo-4的细胞荧光强度比较。66 mm×58 mm(300×300 DPI)。 Fig 1 The comparison of fluorescence intensity in cells loaded with fluo-3 or fluo-4 before HOstimulation. 66 mm×58 mm (300×300 DPI).
图 2 HO刺激后,实时观察细胞中fluo-3和fluo-4荧光强度变化。141 mm×305 mm(300×300 DPI)。 Fig 2 The real-time observation of the fluorescence intensity in selected cells loaded with fluo-3 or fluo-4 after HOstimulation. 141 mm ×305 mm (300×300 DPI).
图 3 HO刺激后,选定细胞的fluo-3或fluo-4荧光强度变化曲线。145 mm×50 mm(300×300 DPI)。 Fig 3 The fluorescence intensity curve of selected cells loaded with fluo-3 or fluo-4 after HOstimulation. 145 mm×50 mm (300×300 DPI).
图 4 HO促进A549细胞凋亡。A: 未经HO处理的细胞;B: HO处理的细胞,可见核固缩(→)、染色质边集(△)以及核碎裂(☆)。65 mm×32 mm(300×300 DPI)。 Fig 4 HOpromoted the apoptosis of A549 cells. HO: cells without HOtreatment; B: karyopyknosis (→), chromatic condensation (△) and nuclear fragmentation (☆) were observed in HOtreated cells. 65 mm×32 mm (300×300 DPI).
3 讨论
本研究在对Ca2+信号实时观察的过程中发现,较高浓度的H2O2(50 mM)诱导细胞内[Ca2+]i迅速升高。由于细胞外液不含有Ca2+,因此[Ca2+]i升高可能是由于细胞的氧化应激反应,导致细胞内钙库(如内质网)释放造成的。有研究[9]表明,H2O2诱导细胞凋亡与钙超载密切相关,氧化应激诱导细胞凋亡的分子机制非常复杂,涉及很多信号转导通路,包括经典的线粒体途径[10]和死亡受体途径[11],以及机制仍不太明确的内质网途径[12]。近年来,对内质网凋亡途径的研究发现,内质网应激导致的非折叠蛋白反应(unfolded protein response, UPR)扮演着重要角色。研究[13]显示,细胞的氧化应激损伤,导致内质网释放大量Ca2+,同时伴有内质网应激,引发UPR,用于ER正常功能的重建。如果细胞内Ca2+浓度持续升高,内质网应激持续时间较长或非常严重,将激活依赖Ca2+的激酶和磷酸酶[14],如calpain、caspase-12和caspase-3级联反应,最终导致细胞凋亡[15]。本研究发现,肺癌细胞A549在较高浓度的H2O2作用下,细胞内Ca2+浓度明显升高,同时发现细胞短时间内即发生凋亡,推测可能与内质网应激有关,calpains或caspases信号通路是否被Ca2+激活导致细胞凋亡,还有待于进一步深入研究。本研究中,可能由于肿瘤细胞的生理Ca2+含量较低,或实时观察时间有限,预实验时使用较低浓度的H2O2时(5 mM, 10 mM)时,没有观察到明显的[Ca2+]i变化,因此我们采用较高浓度的H2O2刺激细胞,低浓度H2O2对A549细胞其他生物学行为的影响还有待于进一步研究。
Fluo-3和fluo-4是目前实验室中常用的Ca2+荧光染料,与Ca2+特异性结合后荧光强度明显增加。本研究对fluo-3和fluo-4在H2O2诱导的A549细胞凋亡过程中监测[Ca2+]i变化的应用情况进行了比较。结果发现,在相同的负载浓度、孵育时间、细胞密度、刺激因素和图像采集条件下,fluo-4的荧光强度更强,大约是fluo-3的2倍左右,这提示我们当细胞内Ca2+信号较强时,用fluo-3或fluo-4都可以观察到明显的荧光强度的变化,但如果细胞内Ca2+信号较弱时,使用 fluo-4探针可能更具优势。细胞经H2O2处理后,fluo-3荧光强度的变化范围大于fluo-4,可能由于荧光探针的Kd值不同,具有较大Kd值的fluo-3与Ca2+的亲和力较低,适合于检测较宽范围的[Ca2+]i变化。我们还发现,采用荧光探针fluo-3或fluo-4,通过公式计算测定的细胞内[Ca2+]i变化范围不是很一致,可能与选择的细胞有关,不同的细胞对H2O2刺激的反应不同,再多重复几次实验,可能会得到比较一致的结果。
Fluo-3和f luo-4进入细胞的方式均为酯负载法。Fluo-3和fluo-4与具有细胞膜通透性的乙酰甲酯(AM)相连形成Fluo-3 AM和fluo-4 AM复合物,穿过细胞膜后在细胞内被非特异性酯酶水解生成相应的Ca2+荧光探针,与Ca2+结合检测细胞内[Ca2+]i变化。我们在实验过程中发现,含血清的培养基会影响fluo-3和fluo-4的负载,在激光共聚焦显微镜下观察荧光非常微弱,采集不到良好的荧光信号,这可能是由于含血清的培养基能阻止荧光染料进入细胞。使用标准的无钙细胞外液,由于没有血清和培养液的营养支持,对细胞状态和活性的影响较大,细胞可能在观察过程中逐渐皱缩、脱壁或凋亡,不能对细胞进行长时间检测。
近几年还出现了荧光强度更强、检测范围更宽、更灵敏的Ca2+荧光染料,如fluo-5F、fluo-5N、fluo-4FF,均为fluo-4的类似物,但与Ca2+结合的亲和力较低,更适合于检测1 μM-1 mM范围内的Ca2+水平变化。Fluo-3和fluo-4测定的Ca2+饱和浓度为≥5 μM,当[Ca2+]i升高超过5 μM时,即使有更多的Ca2+出现在细胞中,fluo-3和fluo-4也检测不到,而fluo-5F、fluo-5N、fluo-4FF测定的Ca2+饱和浓度为≥1 mM,这些新的Ca2+探针可以检测到更多的Ca2+,在检测高水平的Ca2+信号时更具优势。Fluo-5F、fluo-4FF的Kd值分别为2.3 μM和9.7 μM,而fluo-5N的Kd值高达90 μM,适合检测更高浓度的Ca2+变化[16]。研究表明应根据细胞内[Ca2+]i的变化水平选择合适的Ca2+荧光探针,当待测Ca2+浓度在荧光染料Kd值的0.1倍-10倍范围之内时其荧光强度与[Ca2+]i呈良好的线性关系,检测结果最准确。
Fluo-3和fluo-4及其类似物均为化学合成的Ca2+荧光染料,与Ca2+有较高的亲和力,通过负载方式很容易进入细胞,但不能在亚细胞水平精确定位,而且可能出现光漂白现象,长时间观察时对细胞活性有影响。除了Ca2+荧光染料,近年来还出现了水母发光蛋白和Cameleon等[17]基于生物发光的Ca2+荧光蛋白探针,需要通过基因转染方式进入细胞,与细胞器特异性基因连接表达重组蛋白,可实现精确的亚细胞定位,长时间观察其荧光强度稳定不会淬灭。目前我们已应用Ca2+荧光蛋白Cameleon YC3.6对H2O2刺激后A549细胞中[Ca2+]i进行了测定[18],但在比较化学合成的Ca2+荧光探针或Ca2+荧光蛋白这两种不同的检测方法方面,还有待于进一步研究。我们应根据实验目的、细胞种类、刺激因素以及检测条件选择合适的Ca2+荧光探针,以帮助我们深入研究不同刺激条件下肿瘤细胞内[Ca2+]i变化,Ca2+信号转导的相关分子机制,以及对肿瘤细胞生物学行为的影响。
Xue QF, Wang ZG. Calcium overload hazard and new type calcium antagonist investigations. Zhongguo Yao Xue Za Zhi, 2009, 44(2): 150-152. [薛全福, 王振纲. 钙超载的危害和新型钙阻断剂的研发. 中国药学杂志, 2009, 44(2): 150-152.]
Morgado S, Granados MP, Bejarano I, et al. Role of intracellular calcium on hydrogen peroxide-induced apoptosis in rat pancreatic acinar AR42J cells. J Applied Biomed, 2008, 6(4): 211-224.
Wu SH, Hang LW, Yang JS, et al. Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways. Anticancer Res, 2010, 30(6): 2125-2133.
Hung JY, Hsu YL, Ni WC, et al. Oxidative and endoplasmic reticulum stress signaling are involved in dehydrocostuslactone-mediated apoptosis in human non-small cell lung cancer cells. Lung Cancer, 2010, 68(3): 355-365.
Yang H, Zhang Q, He J, et al. Regulation of calcium signaling in lung cancer. J Thorac Dis, 2010, 2(1): 52-56.
Guatimosim S, Guatimosim C, Song LS. Imaging calcium sparks in cardiac myocytes. Methods Mol Biol, 2011, 689: 205-214.
Robinson JA, Jenkins NS, Holman NA, et al. Ratiometric and nonratiometric Ca2+ indicators for the assessment of intracellular free Ca2+ in a breast cancer cell line using a fluorescence microplate reader. J Biochem Biophys Methods, 2004, 58(3): 227-237.
Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem, 1985, 260(6): 3440-3450.
Li GY, Fan B, Zheng YC. Calcium overload is a critical step in programmed necrosis of ARPE-19 cells induced by high-concentration H2O2. Biomed Environ Sci, 2010, 23(5): 371-377.
Chiara F, Gambalunga A, Sciacovelli M, et al. Chemotherapeutic induction of mitochondrial oxidative stress activates GSK-3α/β and Bax, leading to permeability transition pore opening and tumor cell death. Cell Death Dis, 2012, 3: e444.
Gómez-Quiroz LE, Factor VM, Kaposi-Novak P, et al. Hepatocyte-specific c-Met deletion disrupts redox homeostasis and sensitizes to Fas-mediated apoptosis. J Biol Chem, 2008, 283(21): 14581-14589.
Ip SW, Wu SY, Yu CC, et al. Induction of apoptotic death by curcumin in human tongue squamous cell carcinoma SCC-4 cells is mediated through endoplasmic reticulum stress and mitochondria-dependent pathways. Cell Biochem Funct, 2011, 29(8): 641-650.
Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov, 2008, 7(12): 1013-1030.
Das A, Banik NL, Ray SK. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer, 2006, 119(11): 2575-2585.
Wu X, Bers D M. Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+ store throughout cardiac myocyte. Circ Res, 2006, 99(3): 283-291.
Horikawa K, Yamada Y, Matsuda T, et al. Spontaneous network activity visualized by ultrasensitive Ca(2+) indicators, yellow Cameleon-Nano. Nat Methods, 2010, 7(9): 729-732.
1Center of Laboratory Technology and Experimental Medicine; 2Department of Pathology, China Medical University, Shenyang 110001, China
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
背景与目的 肺癌是世界范围内常见的恶性肿瘤,Ca2+对于肿瘤细胞凋亡有重要的调控作用。实时监测肺癌细胞内Ca2+水平,有助于深入研究Ca2+介导肺癌细胞凋亡的分子机制。本研究旨在观察Ca2+荧光探针fluo-3和fluo-4在HO诱导的A549细胞凋亡过程中的应用,实时测定胞浆Ca2+浓度([Ca2+]i),探讨[Ca2+]i与细胞凋亡的关系,并比较两种Ca2+探针在荧光强度及[Ca2+]i测定值方面的差异。 方法 采用Ca2+荧光探针fluo-3和fluo-4负载细胞,1 h后用不同浓度的HO刺激细胞,激光扫描共聚焦显微镜实时测定选取细胞的[Ca2+]i变化。采用DAPI染色试剂盒观察HO刺激后细胞凋亡情况。结果 在相同的探针浓度、负载时间和相同的图像采集参数的条件下,选定细胞内fluo-4平均荧光强度高于fluo-3。50 mM HO刺激后,A549细胞胞浆内[Ca2+]i迅速升高,通过公式计算发现采用fluo-3探针负载的选定细胞中[Ca2+]i变化范围是112.2 nM-1,069.6 nM,采用fluo-4探针负载的选定细胞中[Ca2+]i变化范围是7.6 nM-505.4 nM。同时发现经HO刺激后,凋亡细胞百分比明显增加(P<0.01)。结论 HO促进A549细胞内Ca2+释放,诱导细胞凋亡。Ca2+探针fluo-4可能更适合于监测含量较低的细胞中[Ca2+]i变化。
Background and objective Lung cancer is a common malignant tumor all over the world, and Ca2+ is a critical regulator for apoptosis of cancer cells. The monitoring of cytoplastic Ca2+ level in real-time will contribute to further investigate the molecular mechanisms of apoptosis mediated by Ca2+ in lung cancer cells. To evaluate the Ca2+ indicator fluo-3 and fluo-4 in the process of H2O2 induced the apoptosis of lung adenocarcinoma A549 cells. The cytoplastic Ca2+ concentration ([Ca2+]i) was determined in real-time, and the correlations between [Ca2+]i and cell apoptosis were investigated. The differences in fluorescence intensity and measured value were compared between the two Ca2+ indicators. Methods Cells were loaded with the Ca2+ indicator fluo-3 or fluo-4 for 1 h, and then stimulated with 50 mM H2O2. Laser scanning confocal microscope was applied to perform real-time monitoring on the variation of [Ca2+]i in selected cells. DAPI staining was used to observe apoptosis in H2O2 treated cells. Results Our results showed that the fluorescence intensity of fluo-4 was stronger than that of fluo-3 in the same condition of dye concentration, loading time and image acquisition parameters before or after H2O2 stimulation. The cytoplastic [Ca2+]i was rapidly elevated in H2O2 stimulated A549 cells. The range of [Ca2+]i in selected cells loaded with fluo-3 was 112.2 nM-1,069.6 nM, and that in selected cells loaded with fluo-4 was 7.6 nM-505.4 nM. Moreover, the apoptotic rate was significantly increased in H2O2 treated cells, compared with untreated ones (P<0.01). Conclusion In summary, H2O2 promoted Ca2+ release in A549 cells, and induced cell apoptosis. Ca2+ indicator fluo-4 was probably more applicable to measure [Ca2+]i in cells with less content of Ca2+.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer