Full Text

Turn on search term navigation

© 2018 Zeng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

MicroRNA is endogenous non-coding small RNA that negative regulate and control gene expression, and increasing evidence links microRNA to oncogenesis and the pathogenesis of cancer. The goal of this study was to explore the potential molecular mechanism of miR-375 in various cancers.

Methods

MiR-375 overexpression in different tumor cell lines was probed with microarray data from Gene Expression Omnibus (GEO). The common target genes of miR-375 were obtained by Robust Rank Aggregation (RRA), and identified by miRWalk2.0 software for target gene prediction. Additionally, we directed in silico analysis including Protein-Protein Interactions (PPI) analysis, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways annotations to provide a summary of the function of miR-375 in various carcinomas. Eventually, data was obtained from The Cancer Genome Atlas (TCGA) were utilized for a validation in 7 cancers.

Results

The nine miR-375 related chips were acquired by the GEO data. The 5 down regulated genes came from 9 available microarray datasets, which overlapped with the potential target genes predicted by miRWalk2.0 software. The target genes were intensely enriched in amino acid biosynthetic and metabolic process from biological process (GO) and Cysteine and methionine metabolism (KEGG analysis). In view of these approaches, VASN, MAT2B, HERPUD1, TPAPPC6B and TAT are probably the most important miR-375 targets. In addition, miR-375 was negatively correlated with MAT2B, which was verified in 5 tumors of TCGA.

Conclusion

In summary, this study based on common target genes provides an innovative perspective for exploring the molecular mechanism of miR-375 in human tumors.

Details

Title
The biological functions of target genes in pan-cancers and cell lines were predicted by miR-375 microarray data from GEO database and bioinformatics
Author
Jiang-Hui, Zeng; Xu-Zhi, Liang; Hui-Hua, Lan; Zhu, Xu; ⨯ Xiu-Yun Liang
First page
e0206689
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2127656068
Copyright
© 2018 Zeng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.