It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Timely and accurate detection of microclimates is extremely valuable for monitoring and stimulating exchanges of mass and energy in forest ecosystems under climate change. Recently, the rapid growth of wireless sensor networks (WSNs) has provided a new approach for detecting microclimates in a complex environment at multiple temporal and spatial scales. However, applications of wireless sensors in forest microclimate monitoring have rarely been studied, and the corresponding observation accuracy, error sources and correction methods are not well understood. In this study, through field experiments in two typical subtropical forest ecosystems in Zhejiang Province, China, the accuracy of the temperature and humidity observed by the wireless sensors was evaluated against standard meteorological data. Furthermore, the observation error sources were analyzed and corresponding correction models were established. The results showed that the wireless sensor-based temperature and humidity values performed well within the total observation accuracy. However, the observation errors varied with season, daily periodicity and weather conditions. For temperature, the wireless sensor observations were overestimated during the daytime while they were underestimated during the nighttime. For humidity, the data observed by the wireless sensors generally appeared as overestimates. Adopting humidity as the corrected factor, correction models were established and effectively improved the accuracy of the microclimatic data observed by the wireless sensors. Notably, our error analysis demonstrated that the observation errors may be associated with the shell material of the wireless sensor, suggesting that shading measures for the wireless sensors should be considered for outdoor work.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Earth Sciences and Engineering, Hohai University, Nanjing, China
2 College of Culture Industry and Tourism Management, Sanjiang University, Nanjing, China
3 International Institute for Earth System Science, Nanjing University, Nanjing, China
4 Beijing Pri-eco Technology Co., LTD, Beijing, China