It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We consider the mass-radius bounds for spherically symmetric static compact objects in the de Rham-Gabadadze-Tolley (dRGT) massive gravity theories, free of ghosts. In this type of gravitational theories the graviton, the quantum of gravity, may have a small, but non-vanishing mass. We derive the hydrostatic equilibrium and mass continuity equations in the Lorentz-violating massive gravity in the presence of a cosmological constant and for a non-zero graviton mass. The case of the constant density stars is also investigated by numerically solving the equilibrium equations. The influence of the graviton mass on the global parameters (mass and radius) of these stellar configurations is also considered. The generalized Buchdahl relations, giving the upper and lower bounds of the mass-radius ratio are obtained, and discussed in detail. As an application of our results we obtain gravitational redshift bounds for compact stellar type objects in the Lorentz-violating dRGT massive gravity, which may (at least in principle) be used for observationally testing this theory in an astrophysical context.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 High Energy Physics Theory Group, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
2 Department of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; School of Physics, Sun Yat-Sen University, Guangzhou, People’s Republic of China; Department of Mathematics, University College London, London, UK