Full Text

Turn on search term navigation

© 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effect of rain on radiative fluxes and heating rates is a process that is neglected in most of the large scale atmospheric models used for weather forecasting or climate prediction. Yet to our knowledge, the magnitude of the resulting radiative bias remains unquantified. This study aims to quantify the rain radiative effect (RRE) at a range of temporal and spatial scales, as a step toward determining whether the radiation schemes in these models should include rain. Using off-line radiative transfer calculations with input from an ensemble of cloud resolving model simulations, we find that rain has a negligible effect on global mean radiative fluxes (less than 0.2 W m−2). Weekly mean RREs at specific locations may be larger (less than 4 W m−2). At the finest temporal and spatial resolutions, the RRE can occasionally be much larger again (greater than 100 W m−2), but values exceeding 10 W m−2 occur in less than 0.1% of cases. Using detailed analysis of case studies we demonstrate that the magnitude and direction of the RRE depend on the rain water path, its vertical location with respect to cloud, and, for longwave radiation, the temperature at which it occurs. Large RREs generally only occur when the rain water path is large and the cloud water path is small. These cases are infrequent and intermittent. As the RREs are generally small, we conclude that this missing process is unlikely to be important for large scale atmospheric models.

Details

Title
Characterizing the Radiative Effect of Rain Using a Global Ensemble of Cloud Resolving Simulations
Author
Hill, P G 1   VIAFID ORCID Logo  ; Chiu, J C 2   VIAFID ORCID Logo  ; Allan, R P 3   VIAFID ORCID Logo  ; J.-D. Chern 4 

 Department of Meteorology, University of Reading, Reading, UK 
 Department of Meteorology, University of Reading, Reading, UK; Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA 
 Department of Meteorology, University of Reading, Reading, UK; National Centre for Earth Observation, Reading, UK 
 NASA Goddard Space Flight Center, Greenbelt, MD, USA; Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA 
Pages
2453-2470
Section
Research Articles
Publication year
2018
Publication date
Oct 2018
Publisher
John Wiley & Sons, Inc.
e-ISSN
19422466
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2135012865
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.