It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Lutetium oxyorthosilicate (LSO) or lutetium yttrium oxyorthosilicate (LYSO) are the scintillator materials most widely used today in PET detectors due to their convenient physical properties for the detection of 511 keV annihilation photons. Natural lutetium contains 2.6% of 176Lu which decays beta to excited states of 176Hf producing a constant background signal. Although previous works have studied the background activity from LSO/LYSO, the shape of the spectrum, resulting from β-particle and γ radiation self-detection, has not been fully explained. The present work examines the contribution of the different β-particle and γ-ray interactions to provide a fuller comprehension of this background spectrum and to explain the differences observed when using crystals of different sizes. To this purpose we have shifted the continuous β-particle energy spectrum of 176Lu from zero to the corresponding energy value for all combinations of the isomeric transitions of 176Hf (γ-rays/internal conversion). The area of each shifted β-spectrum was normalized to reflect the probability of occurrence. To account for the probability of the γ-rays escaping from the crystal, Monte Carlo simulations using PENELOPE were performed in which point-like sources of monoenergetic photons were generated, inside LYSO square base prisms (all 1 cm thick) of different sizes: 1.0 cm to 5.74 cm. The analytic distributions were convolved using a varying Gaussian function to account for the measured energy resolution. The calculated spectra were compared to those obtained experimentally using monolithic crystals of the same dimensions coupled to SiPM arrays. Our results are in very good agreement with the experiment, and even explain the differences observed due to crystal size. This work may prove useful to calibrate and assess detector performance, and to measure energy resolution at different energy values.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
2 Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico