Full text

Turn on search term navigation

© 2018 Vaquerizo-Villar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The gold standard for pediatric sleep apnea hypopnea syndrome (SAHS) is overnight polysomnography, which has several limitations. Thus, simplified diagnosis techniques become necessary.

Objective

The aim of this study is twofold: (i) to analyze the blood oxygen saturation (SpO2) signal from nocturnal oximetry by means of features from the wavelet transform in order to characterize pediatric SAHS; (ii) to evaluate the usefulness of the extracted features to assist in the detection of pediatric SAHS.

Methods

981 SpO2 signals from children ranging 2–13 years of age were used. Discrete wavelet transform (DWT) was employed due to its suitability to deal with non-stationary signals as well as the ability to analyze the SAHS-related low frequency components of the SpO2 signal with high resolution. In addition, 3% oxygen desaturation index (ODI3), statistical moments and power spectral density (PSD) features were computed. Fast correlation-based filter was applied to select a feature subset. This subset fed three classifiers (logistic regression, support vector machines (SVM), and multilayer perceptron) trained to determine the presence of moderate-to-severe pediatric SAHS (apnea-hypopnea index cutoff ≥ 5 events per hour).

Results

The wavelet entropy and features computed in the D9 detail level of the DWT reached significant differences associated with the presence of SAHS. All the proposed classifiers fed with a selected feature subset composed of ODI3, statistical moments, PSD, and DWT features outperformed every single feature. SVM reached the highest performance. It achieved 84.0% accuracy (71.9% sensitivity, 91.1% specificity), outperforming state-of-the-art studies in the detection of moderate-to-severe SAHS using the SpO2 signal alone.

Conclusion

Wavelet analysis could be a reliable tool to analyze the oximetry signal in order to assist in the automated detection of moderate-to-severe pediatric SAHS. Hence, pediatric subjects suffering from moderate-to-severe SAHS could benefit from an accurate simplified screening test only using the SpO2 signal.

Details

Title
Wavelet analysis of oximetry recordings to assist in the automated detection of moderate-to-severe pediatric sleep apnea-hypopnea syndrome
Author
Vaquerizo-Villar, Fernando; ⨯ Daniel Álvarez; ⨯ Leila Kheirandish-Gozal; Gutiérrez-Tobal, Gonzalo C; Barroso-García, Verónica; Crespo, Andrea; Félix del Campo; ⨯ David Gozal; Hornero, Roberto
First page
e0208502
Section
Research Article
Publication year
2018
Publication date
Dec 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2151746832
Copyright
© 2018 Vaquerizo-Villar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.