Content area

Abstract

Leveraging the intrinsic symmetries in data for clear and efficient analysis is an important theme in signal processing and other data-driven sciences. A basic example of this is the ubiquity of the discrete Fourier transform which arises from translational symmetry (i.e. time-delay/phase-shift). Particularly important in this area is understanding how symmetries inform the algorithms that we apply to our data. In this paper we explore the behavior of the dimensionality reduction algorithm multi-dimensional scaling (MDS) in the presence of symmetry. We show that understanding the properties of the underlying symmetry group allows us to make strong statements about the output of MDS even before applying the algorithm itself. In analogy to Fourier theory, we show that in some cases only a handful of fundamental "frequencies" (irreducible representations derived from the corresponding group) contribute information for the MDS Euclidean embedding.

Details

1009240
Title
Multi-Dimensional Scaling on Groups
Publication title
arXiv.org; Ithaca
Publication year
2020
Publication date
Jan 14, 2020
Section
Computer Science; Mathematics; Statistics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2020-01-15
Milestone dates
2018-12-08 (Submission v1); 2020-01-14 (Submission v2)
Publication history
 
 
   First posting date
15 Jan 2020
ProQuest document ID
2154454489
Document URL
https://www.proquest.com/working-papers/multi-dimensional-scaling-on-groups/docview/2154454489/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2020-01-16
Database
ProQuest One Academic