Content area

Abstract

More than two decades of different types of mode analyses has shown that these techniques can be useful in describing large-scale motions in protein systems. A number of mode analyses are available and include quasiharmonics, classical normal mode, block normal mode, and the elastic network model. Each of these methods has been validated for protein systems and this variety allows researchers to choose the technique that gives the best compromise between computational cost and the level of detail in the calculation. These same techniques have not been systematically tested for nucleic acid systems, however. Given the differences in interactions and structural features between nucleic acid and protein systems, the validity of these techniques in the protein regime cannot be directly translated into validity in the nucleic acid realm. In this work, we investigate the usefulness of the above mode analyses as applied to two RNA systems, i.e., the hammerhead ribozyme and a guanine riboswitch. We show that classical normal-mode analysis can match the magnitude and direction of residue fluctuations from the more detailed, anharmonic technique, quasiharmonic analysis of a molecular dynamics trajectory. The block normal-mode approximation is shown to hold in the nucleic acid systems studied. Only the mode analysis at the lowest level of detail, the elastic network model, produced mixed results in our calculations. We present data that suggest that the elastic network model, with the popular parameterization, is not best suited for systems that do not have a close packed structure; this observation also hints at why the elastic network model has been found to be valid for many globular protein systems. The different behaviors of block normal-mode analysis and the elastic network model, which invoke similar degrees of coarse-graining to the dynamics but use different potentials, suggest the importance of applying a heterogeneous potential function in a robust analysis of the dynamics of biomolecules, especially those that are not closely packed. In addition to these comparisons, we briefly discuss insights into the conformational space available to the hammerhead ribozyme. [PUBLICATION ABSTRACT]

Details

Title
Comparison of Mode Analyses at Different Resolutions Applied to Nucleic Acid Systems
Publication title
Volume
89
Issue
5
Pages
2939-49
Number of pages
11
Publication year
2005
Publication date
Nov 2005
Publisher
Biophysical Society
Place of publication
New York
Country of publication
United States
Publication subject
ISSN
00063495
e-ISSN
15420086
Source type
Scholarly Journal
Language of publication
English
Document type
Comparative Study
Document feature
Tables; References; Photographs; Graphs; Equations
Accession number
16100266
ProQuest document ID
215702241
Document URL
https://www.proquest.com/scholarly-journals/comparison-mode-analyses-at-different-resolutions/docview/215702241/se-2?accountid=208611
Copyright
Copyright Biophysical Society Nov 2005
Last updated
2024-10-04
Database
ProQuest One Academic