Full Text

Turn on search term navigation

Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Ruminal microbes are vital to the conversion of lignocellulose-rich plant materials into nutrients for ruminants. Although protozoa play a key role in linking ruminal microbial networks, the contribution of protozoa to rumen fermentation remains controversial; therefore, this meta-analysis was conducted to quantitatively summarize the temporal dynamics of methanogenesis, ruminal volatile fatty acid (VFA) profiles and dietary fiber digestibility in ruminants following the elimination of protozoa (also termed defaunation). A total of 49 studies from 22 publications were evaluated.

Results

The results revealed that defaunation reduced methane production and shifted ruminal VFA profiles to consist of more propionate and less acetate and butyrate, but with a reduced total VFA concentration and decreased dietary fiber digestibility. However, these effects were diminished linearly, at different rates, with time during the first few weeks after defaunation, and eventually reached relative stability. The acetate to propionate ratio and methane production were increased at 7 and 11 wk after defaunation, respectively.

Conclusions

Elimination of protozoa initially shifted the rumen fermentation toward the production of more propionate and less methane, but eventually toward the production of less propionate and more methane over time.

Details

Title
Dynamics of methanogenesis, ruminal fermentation and fiber digestibility in ruminants following elimination of protozoa: a meta-analysis
Author
Li, Zongjun; Deng, Qi; Liu, Yangfan; Yan, Tao; Li, Fei; Cao, Yangchun; Yao, Junhu
Publication year
2018
Publication date
2018
Publisher
BioMed Central
ISSN
16749782
e-ISSN
20491891
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2158170571
Copyright
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.