Full text

Turn on search term navigation

Copyright © 2018 Donghao Hao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Rapid increase of vehicle longitudinal acceleration is required in an engine torque increasing phase, whereas little overshoot and oscillating acceleration are required in a torque holding phase. These two features give satisfying results with respect to both drivability and comfortability. However, when subjected to a sudden torque change in the tip-in condition, the driveline undergoes strong low-frequency torsional vibration which has an adverse impact on vehicle comfortability. Normally, a linear quadratic (LQ) controller has a good comfort performance in reducing the vibration but with negative impact on the dynamic response of the vehicle which weakens the drivability. The two different performance demands in the two phases cannot be achieved simultaneously by only adjusting the weighting coefficients of the LQ controller. Therefore, a new control strategy decoupling the two phases is necessary and proposed in this paper. A linear quadratic regulator (LQR) is used in the torque increasing phase for dynamic response demand while a linear quadratic tracking (LQT) controller is applied in the torque holding phase for comfortability demand. The two controllers are switched smoothly via a fusion weighting factor based on the proposed fuzzy logic switching strategy. A quantitative evaluation method is used to evaluate the performances of the proposed control strategy. The results show that the double-targets switching control keeps better performances in both drivability and comfortability. The comfortability index of the proposed strategy is improved by 79.74% compared with that of the LQT whereas the dynamic response index is improved by 21.88% compared with that of the LQR.

Details

Title
Double-Target Switching Control of Vehicle Longitudinal Low-Frequency Vibration Based on Fuzzy Logic
Author
Donghao Hao 1   VIAFID ORCID Logo  ; Zhao, Changlu 1 ; Huang, Ying 1   VIAFID ORCID Logo  ; Dai, Peilin 1 ; Liu, Yongjian 2 

 Research Center of Power Machinery, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China 
 Delphi Shanghai Dynamics and Propulsion Systems Co. Ltd., Shanghai 200131, China 
Editor
José J Rangel-Magdaleno
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2158187266
Copyright
Copyright © 2018 Donghao Hao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/