Content area

Abstract

The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the 136Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/m\[ \sqrt{\mathrm{m}} \] for pure xenon down to 2.5 mm/m\[ \sqrt{\mathrm{m}} \] using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.

Details

Title
Electroluminescence TPCs at the thermal diffusion limit
Author
Henriques, C A O 1 ; Monteiro, C M B 1 ; González-Díaz, D 2 ; Azevedo, C D R 3 ; Freitas, E D C 1 ; Mano, R D P 1 ; Jorge, M R 1 ; Fernandes, A F M 1 ; Gómez-Cadenas, J J 4 ; Fernandes, L M P 1   VIAFID ORCID Logo  ; Adams, C 5 ; Álvarez, V 6 ; Arazi, L 7 ; Bailey, K 8 ; Ballester, F 9 ; Benlloch-Rodríguez, J M 6 ; F I G M Borges 10 ; Botas, A 6 ; Cárcel, S 6 ; Carrión, J V 6 ; Cebrián, S 11 ; Conde, C A N 10 ; Díaz, J 6 ; Diesburg, M 12 ; Escada, J 10 ; Esteve, R 9 ; Felkai, R 6 ; Ferrario, P 4 ; Ferreira, A L 3 ; Generowicz, J 13 ; Goldschmidt, A 14 ; Guenette, R 5 ; Gutiérrez, R M 15 ; Hafidi, K 8 ; Hauptman, J 16 ; Hernandez, A I 15 ; Hernando Morata, J A 2 ; Herrero, V 9 ; Johnston, S 8 ; Jones, B J P 17 ; Kekic, M 6 ; Labarga, L 18 ; Laing, A 6 ; Lebrun, P 12 ; López-March, N 6 ; Losada, M 15 ; Martín-Albo, J 5 ; Martínez, A 6 ; Martínez-Lema, G 19 ; McDonald, A 17 ; Monrabal, F 20 ; Mora, F J 9 ; J Muñoz Vidal 6 ; Musti, M 6 ; Nebot-Guinot, M 6 ; Novella, P 6 ; Nygren, D R 17 ; Palmeiro, B 6 ; Para, A 12 ; Pérez, J 21 ; Psihas, F 17 ; Querol, M 6 ; Renner, J 6 ; Repond, J 8 ; Riordan, S 8 ; Ripoll, L 22 ; Rodríguez, J 6 ; Rogers, L 17 ; Romo-Luque, C 6 ; Santos, F P 10 ; J M F dos Santos 1 ; Simón, A 23 ; Sofka, C 24 ; Sorel, M 6 ; Stiegler, T 25 ; Toledo, J F 9 ; Torrent, J 13 ; J F C A Veloso 3 ; Webb, R 25 ; White, J T 25 ; Yahlali, N 6 

 LIBPhys, Physics Department, University of Coimbra, Coimbra, Portugal 
 Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Santiago de Compostela, Spain 
 Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), Universidade de Aveiro, Aveiro, Portugal 
 Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain 
 Department of Physics, Harvard University, Cambridge, MA, USA 
 Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain 
 Nuclear Engineering Unit, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel 
 Argonne National Laboratory, Argonne, IL, USA 
 Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Valencia, Spain 
10  LIP, Department of Physics, University of Coimbra, Coimbra, Portugal 
11  Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain 
12  Fermi National Accelerator Laboratory, Batavia, IL, USA 
13  Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain 
14  Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA 
15  Centro de Investigación en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Bogotá, Colombia 
16  Department of Physics and Astronomy, Iowa State University, Ames, IA, USA 
17  Department of Physics, University of Texas at Arlington, Arlington, TX, USA 
18  Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain 
19  Instituto Gallego de Física de Altas Energías, Univ. de Santiago de Compostela, Santiago de Compostela, Spain; Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain 
20  Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain; Department of Physics, University of Texas at Arlington, Arlington, TX, USA 
21  Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain; Laboratorio Subterráneo de Canfranc, Huesca, Spain 
22  Escola Politècnica Superior, Universitat de Girona, Girona, Spain 
23  Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain; Nuclear Engineering Unit, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel 
24  Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA; University of Texas at Austin, Austin, TX, USA 
25  Department of Physics and Astronomy, Texas A&M University, College Station, TX, USA 
First page
1
Publication year
2019
Publication date
Jan 2019
Publisher
Springer Nature B.V.
e-ISSN
10298479
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2164439787
Copyright
Journal of High Energy Physics is a copyright of Springer, (2019). All Rights Reserved.