It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recently, we reported that tetrandrine, a natural alkaloid, could inhibit the osteoclastogenesis and bone erosion through enhancing the ubiquitination and degradation of spleen tyrosine kinase (Syk). Herein, we addressed whether and how aryl hydrocarbon receptor (AhR) mediate the effect of tetrandrine. In vitro, tetrandrine was shown to repress RANKL-induced osteoclastogenesis and the expression of osteoclast-related marker genes, which was almost completely reversed by either AhR antagonist CH223191 or siRNA. In pre-osteoclasts, tetrandrine enhanced the ubiquitination and degradation of Syk through the AhR/c-src/c-Cbl signaling pathway, downregulated the expression of phospho-Syk and phospho-PLCγ2, and inhibited the nuclear translocation of NFATc1, a master transcription factor for osteoclastogenesis. Notably, tetrandrine acted through the non-genomic pathway of the ligand-activated AhR, as evidenced by the fact that the effect of tetrandrine did not change in the absence of AhR nuclear translocator. In collagen-induced arthritis rats, oral administration of tetrandrine decreased the number of phospho-Syk-positive cells and osteoclasts, and reduced the bone erosion in the areas of the proximal tibial epiphysis excluding the cortical bone. A combined use with CH223191 almost abolished the effect of tetrandrine. These findings revealed that tetrandrine enhanced the ubiquitination and degradation of Syk and consequently repressed the osteoclastogenesis and bone destruction through the AhR-c-src-c-Cbl pathway.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 China Pharmaceutical University, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, Nanjing, China (GRID:grid.254147.1) (ISNI:0000 0000 9776 7793) ; Hebei University of Chinese Medicine, Department of Pharmacology, Shijiazhuang, China (GRID:grid.488206.0) (ISNI:0000 0004 4912 1751)
2 China Pharmaceutical University, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, Nanjing, China (GRID:grid.254147.1) (ISNI:0000 0000 9776 7793)