Abstract

The esophagus is critical for passage of oral bolus into the gastrointestinal tract. Diseases of the esophagus, such as malignancy, can necessitate resection of esophageal tissue. To maintain esophageal continuity with the remainder of the gastrointestinal tract, reconstruction is mandatory. Current reconstructive options are morbid and involve autologous conduits such as stomach, small bowel, or colon. An alternative tissue engineered conduit that facilitates esophageal regrowth to reduce the need for these morbid reconstructions would have significant clinical utility. Several critical challenges must be addressed in order to make these conduits a clinical reality. First, scaffolds should be designed to ideally mimic mechanical behavior of the native esophagus. To accomplish this, a non-destructive method to mechanically assess these constructs benchmarked to native esophagi is necessary before and after implantation. Second, scaffolds should be both biocompatible and mechanically stable in vitro; this would allow selection of desirable candidates for subsequent in vivo testing. Finally, in vivo testing of the esophageal conduit requires development of an analogous large animal model to human disease. In vivo large animal model testing is required as proof of concept for esophageal regeneration as a critical step toward future human use.3

Details

Title
Engineered Esophageal Regeneration
Author
Aho, Johnathon Michael Edward
Year
2017
Publisher
ProQuest Dissertation & Theses
ISBN
978-0-438-79614-0
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
2170765275
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.