It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Glucose plays a crucial role in the mammalian cell metabolism. In the erythrocytes and endothelial cells of the blood-brain barrier, glucose uptake is mediated by the glucose transporter type 1 (GluT1). GluT1 deficiency or mutations cause severe physiological disorders. GluT1 is also an important target in cancer therapy as it is overexpressed in tumor cells. Previous studies have suggested that GluT1 mediates solute transfer through a cycle of conformational changes. However, the corresponding 3D structures adopted by the transporter during the transfer process remain elusive. In the present work, we first elucidate the whole conformational landscape of GluT1 in the absence of glucose, using long molecular dynamics simulations and show that the transitions can be accomplished through thermal fluctuations. Importantly, we highlight a strong coupling between intracellular and extracellular domains of the protein that contributes to the transmembrane helices reorientation during the transition. The conformations adopted during the simulations differ from the known 3D bacterial homologs structures resolved in similar states. In holo state simulations, we find that glucose transits along the pathway through significant rotational motions, while maintaining hydrogen bonds with the protein. These persistent motions affect side chains orientation, which impacts protein mechanics and allows glucose progression.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR S1134, DSIMB, Laboratoire d’Excellence GR-Ex, Paris, France