Full Text

Turn on search term navigation

© 2019 Fatehkia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Much research has examined how crime rates vary across urban neighborhoods, focusing particularly on community-level demographic and social characteristics. A parallel line of work has treated crime at the individual level as an expression of certain behavioral patterns (e.g., impulsivity). Little work has considered, however, whether the prevalence of such behavioral patterns in a neighborhood might be predictive of local crime, in large part because such measures are hard to come by and often subjective. The Facebook Advertising API offers a special opportunity to examine this question as it provides an extensive list of “interests” that can be tabulated at various geographic scales. Here we conduct an analysis of the association between the prevalence of interests among the Facebook population of a ZIP code and the local rate of assaults, burglaries, and robberies across 9 highly populated cities in the US. We fit various regression models to predict crime rates as a function of the Facebook and census demographic variables. In general, models using the variables for the interests of the whole adult population on Facebook perform better than those using data on specific demographic groups (such as Males 18-34). In terms of predictive performance, models combining Facebook data with demographic data generally have lower error rates than models using only demographic data. We find that interests associated with media consumption and mating competition are predictive of crime rates above and beyond demographic factors. We discuss how this might integrate with existing criminological theory.

Details

Title
Correlated impulses: Using Facebook interests to improve predictions of crime rates in urban areas
Author
Fatehkia, Masoomali; ⨯ Dan O’Brien; Weber, Ingmar
First page
e0211350
Section
Research Article
Publication year
2019
Publication date
Feb 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2175868977
Copyright
© 2019 Fatehkia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.