It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Understanding the genetic networks and their role in chronic diseases (e.g., cancer) is one of the important objectives of biological researchers. In this work, we present a text mining system that constructs a gene-gene-interaction network for the entire human genome and then performs network analysis to identify disease-related genes. We recognize the interacting genes based on their co-occurrence frequency within the biomedical literature and by employing linear and non-linear rare-event classification models. We analyze the constructed network of genes by using different network centrality measures to decide on the importance of each gene. Specifically, we apply betweenness, closeness, eigenvector, and degree centrality metrics to rank the central genes of the network and to identify possible cancer-related genes.
Results
We evaluated the top 15 ranked genes for different cancer types (i.e., Prostate, Breast, and Lung Cancer). The average precisions for identifying breast, prostate, and lung cancer genes vary between 80-100%. On a prostate case study, the system predicted an average of 80% prostate-related genes.
Conclusions
The results show that our system has the potential for improving the prediction accuracy of identifying gene-gene interaction and disease-gene associations. We also conduct a prostate cancer case study by using the threshold property in logistic regression, and we compare our approach with some of the state-of-the-art methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer