It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Functional annotation of genes is an essential step in omics data analysis. Multiple databases and methods are currently available to summarize the functions of sets of genes into higher level representations, such as ontologies and molecular pathways. Annotating results from omics experiments into functional categories is essential not only to understand the underlying regulatory dynamics but also to compare multiple experimental conditions at a higher level of abstraction. Several tools are already available to the community to represent and compare functional profiles of omics experiments. However, when the number of experiments and/or enriched functional terms is high, it becomes difficult to interpret the results even when graphically represented. Therefore, there is currently a need for interactive and user-friendly tools to graphically navigate and further summarize annotations in order to facilitate results interpretation also when the dimensionality is high.
Results
We developed an approach that exploits the intrinsic hierarchical structure of several functional annotations to summarize the results obtained through enrichment analyses to higher levels of interpretation and to map gene related information at each summarized level. We built a user-friendly graphical interface that allows to visualize the functional annotations of one or multiple experiments at once. The tool is implemented as a R-Shiny application called FunMappOne and is available at https://github.com/grecolab/FunMappOne.
Conclusion
FunMappOne is a R-shiny graphical tool that takes in input multiple lists of human or mouse genes, optionally along with their related modification magnitudes, computes the enriched annotations from Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, or Reactome databases, and reports interactive maps of functional terms and pathways organized in rational groups. FunMappOne allows a fast and convenient comparison of multiple experiments and an easy way to interpret results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer