It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Replicating nacre’s multiscale architecture represents a promising approach to design artificial materials with outstanding rigidity and toughness. It is highly desirable yet challenging to incorporate self-healing and shape-programming capabilities into nacre-mimetic composites due to their rigidity and high filler content. Here, we report such a composite obtained by infiltrating a thermally switchable Diels-Alder network polymer into a lamellar scaffold of alumina. The chemical bond switchability and the physical confinement by the filler endows the composite with sufficient molecular mobility without compromising its thermal dimension stability. Consequently, our composite is capable of self-healing internal damages. Additionally, in contrast to the intractable planar shape of other artificial nacres, precise control of the polymer chain dynamics allows the shape of our composite to be programmed permanently via plasticity and temporarily via shape memory effect. Our approach paves a new way for designing durable multifunctional bioinspired structural materials.
Incorporation of self-healing and shape programming capabilities into rigid, structural composite is highly desirable yet challenging. Here, the authors report a nacre-mimetic composite obtained by infiltrating a switchable Diels-Alder network polymer into a scaffold of alumina capable of self-healing internal damage.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Zhejiang University, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X)
2 Zhejiang University, Department of Polymer Science and Engineering, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X)