It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Reports regarding the effects of long-term organic and inorganic fertilization on the quantity and quality of soil organic carbon (SOC), particularly in Vertisols, are scarce. In this study, we combined SOC physical fractionation with 13C NMR spectroscopy technology to investigate the effect of 34 years of continuous fertilization on the SOC physical fractions and its chemical composition of 0–20 cm soil layer in a Vertisol. This study consisted of six treatments: no fertilization (control), chemical nitrogen, phosphorus and potassium fertilizers (NPK), low and high amounts of straw with chemical fertilizers (NPKLS and NPKHS), and pig or cattle manure with chemical fertilizers (NPKPM and NPKCM). Over 34 years of continuous fertilization, the SOC sequestration rate was from 0.08 Mg C ha−1 yr−1 in the control treatment to 0.66 Mg C ha−1 yr−1 in the NPKCM treatment, which was linearly related with the C input (P < 0.01). Of the five SOC physical fractions, two silt plus clay fractions (S + C_M, S + C_mM) dominated 74–92% of SOC, while three POM fractions (cPOM fPOM and iPOM) were only 8–26%. The two manure application treatments significantly increased all the SOC physical fractions except for the silt plus clay fraction within macroaggregates (S + C_M) compared with NPK treatment (P < 0.05), which was dependent on the larger amount of C input. Also, the two manure application treatments increased the levels of alkyl C and aromatic C but decreased O-alkyl C (P < 0.05), whereas the straw application (NPKLS and NPKHS) had no impact on the C functional groups (P > 0.05). Overall, the combination of animal manure with inorganic fertilization could enhance the SOC sequestration and alter its quantity and quality in Vertisols.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chinese Academy of Sciences, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, P. R. China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, P. R. China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 Chinese Academy of Sciences, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, P. R. China (GRID:grid.9227.e) (ISNI:0000000119573309)
3 Anhui Academy of Agricultural Science, Institute of Soil and Fertilizer Research, Hefei, P. R. China (GRID:grid.469521.d) (ISNI:0000 0004 1756 0127)